同样的,在500多台服务器之间共享几个大规模存储阵列也可能需要在10多个控制级fabric之间建立多个ISL。从客户的角度来看,更有效地共享存储资产是相当简单的,不过在技术上实现这一目标就可能非常复杂。
大规模SAN有大问题
构建大规模多交换机SAN需要进行细致的网络设计,以确保交换机之间分配有足够的带宽,从而优化应用性能。另外,保护不受故障链路影响也需要设计一种网状结构,以便提供通过fabric的替换路径。
为提升性能和设计替换路径而分配ISL会消耗昂贵的fabric端口,减少连接服务器和存储目标的总端口数,所以fabric网格结构越紧致,SAN的总生产力越低。
当客户试图采用16或32端口的fabric交换机构建大规模fabric时,这显然是个很棘手的问题。在这样的配置中,总端口数的三分之一(或更多)可能会专用于ISL。通常控制器端口数越多,在扩展至大规模SAN时就更具效率,因为每个支架上有更多的端口用于设备连接。另外,新的10 Gbps ISL方案简化了交换机至交换机的连接,并且避免了多ISL的中继问题,如可能出现的紊乱的帧发送。
构建大规模SAN时会出现一些可能影响fabric稳定性的意想不到的后果。由于光纤通道内在的结构化特性,以及具体厂商对设备的实施情况,在单一fabric中连接8台以上交换机时也许会造成不稳定的操作。光纤通道是一种链路层架构,很象桥接LAN。二层网络拥有最优化的性能和最低的协议管理费用,这很好地满足了通道上块数据对性能的需求。
因此,连接多台fabric交换机扩展了扁平的网络空间,象桥接LAN一样,扁平的网络架构容易受到整个网络范围内的干扰。在桥接LAN环境中,广播风暴会对所有连接节点带来负面影响,而在光纤通道SAN中,同样的干扰可能来自于fabric内意外变化(如在大规模运作fabric中接入一台带电交换机)而产生的状态改变通知信号和偶然的fabric重新配置。如下文所说,SAN路由通过网络分区解决了大规模fabric的这些问题。
另外,由于单一fabric中连接了更多的交换机,也需要进行更多交换机至交换机的通信,以便正确分配唯一的地址块、处理分区信息、向简单名称服务器(SNS)表中添加新条目,以及交换路由信息等。有时候有限的SNS容量可能会限制单一fabric所能支持的设备数。
大多数情况下,由于fabric增加至1000多台设备,如果发生中断,那么稳定网络所需的连接时间可能会变得很漫长。第一次构建fabric并对服务器和存储设备进行注册时,所需的交换机至交换机的对话大量增加,因为有更多的交换机要添加到fabric中。如果不小心超过了SNS的容量限制,那么fabric也许最终会稳定下来,但是不是所有的设备都会被识别。
特别声明:本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。