当日,神舟十号航天员在天宫一号开展基础物理实验,为青少年进行太空授课,全国8万余所中学6000余万名师生同步收看。“面对浩瀚的宇宙,我们都是学生。”神舟十号飞船出征之前女航天员王亚平意味深长的话语,一直萦绕在人们的耳畔。作为中国首位“太空教师”,6月20日,她赫然站在了最高的讲台上。
2011年9月,在天宫一号目标飞行器升空之前,关于太空授课的想法已经开始酝酿。随后,这一创意被多次讨论,并于2012年“神九”发射前被采纳。当年11月初,太空授课活动被正式列入“神十”飞行大纲。
此后,来自不同领域的航天人、科学家、教育工作者广泛参与其中,设计实验内容、准备教案、研制教具。“神十”乘组出征之前,航天员们参与的正式天地授课演练不下5次。
这是一次绝无仅有的授课活动。其意义不仅仅在于王亚平所站讲台的高度以及我国青少年因此得到的太空知识,更在于它向世界传递了我国在航天科技方面的独特探索——正如此次太空授课围绕“微重力”这一太空科学重大命题所设计的实验活动,既是航空科技的基础,也一直是各国太空科技竞赛的主题。
1“亚平老师”讲解牛顿第二定律
在距离地面300多千米的天宫一号上,6月20日上午,航天员王亚平变身“亚平老师”,进行了中国首次太空授课。
10时11分,北京航天飞行控制中心报告,已建立与航天员的双向通信链路。王亚平在“助教”聂海胜、“摄像”张晓光的帮助下,向天宫一号舱内摄像机镜头缓缓“飞”来。镜头背后,是设在人大附中的地面课堂。
来自北京16所学校的335名学生,用热烈掌声欢迎他们的亚平老师。与此同时,全国8万余所中学6000余万名师生同步组织收听收看了太空授课活动实况。
“生活中如何测量质量?”王亚平以提问的方式开始讲课。地面课堂的同学们有的说用天平,有的说用电子秤,还有人提到用“曹冲称象”的办法。但是,这些方法在太空失重的环境下都将“失灵”,那么航天员如何测体重?
王亚平用天宫一号上的质量测量仪现身说法。他们从舱壁上打开一个支架形状的装置,聂海胜把自己固定在支架一端。王亚平拉开支架,一放手,支架便在弹簧的作用下回复原位。装置上的LED屏上显示出数字:74.0,这表示聂海胜的实测质量是74千克。
王亚平向同学们解释,天宫一号中的质量测量仪,应用的物理学原理是牛顿第二运动定律:F(力)=m(质量)×a(加速度)。质量测量仪上的弹簧能够产生一个恒定的力F,同时用光栅测速装置测量出支架复位的速度v和时间t,计算出加速度(a=v/t),就能够计算出物体的质量(m=F/a)。
演示完质量测量,王亚平又取出一个物理课上常见的实验装置——单摆。王亚平沿切线方向轻推小球,奇妙的现象出现了,小球开始绕着T形支架的轴心做圆周运动——而在地面对比试验中,需要施加足够的力,给小球一个较大的初速度,才能使它绕轴旋转。
原来,这也是因为在太空中重力消失,系统不具有回复力,在获得初速度后,单摆不会做往复运动而只做圆周运动。
接下来的陀螺试验显示,高速旋转的陀螺具有很好的定轴特性,在太空失重环境下,这一特性更加直观地呈现出来。
王亚平介绍说,高速旋转陀螺的定轴特性在航天领域用途广泛。在天宫一号目标飞行器上,就装有各式各样的陀螺定向仪,以精准地测量航天器的飞行姿态。
本次太空授课最令学生感到震撼的是失重环境下液体表面张力的演示。王亚平也吊足了学生们的胃口,用“见证奇迹的时刻”来引发更大期待。
她把一个金属圈插入装满饮用水的自封袋中,慢慢抽出金属圈,便形成了水膜。轻轻晃动金属圈,水膜也不会破裂。王亚平利用水膜造了一个大水球,并向水球内注入空气,在水球内形成两个球形气泡。随后,奇特的现象发生了,两个气泡各自游移,并未融合。
在提问环节,史家小学四年级学生邱甜的提问,则将现场带入了童趣的幻想:“星星会闪烁吗?能看到UFO吗?”
“这真是个奇妙的问题。”王亚平微笑着说,他们没有看到过UFO,由于航天器脱离了大气层,没有光的散射,所以看到的星星格外明亮,但是不会闪烁。
“告诉大家一件奇妙的事情,我们每天可以看到16次日出,因为我们每90分钟绕地球转一圈。”同学们听到亚平老师的描述,非常震惊。时针指向10:50,王亚平以一句“飞天梦永不失重,科学梦张力无限”结束了首次太空授课。
2中科院专家解读实验原理
“‘神十’航天员王亚平在太空授课中所做的5项科学实验,‘瞄准’的是微重力环境下物体运动的两种特性——测质量、单摆运动以及陀螺的动态与静态实验,展示的是失重环境中的刚体动力学特性;水膜及水球实验,展示的是失重环境中液体表面张力作为‘主导因素’的奇异特征。”
在太空授课前夕,参与在轨科学实验演示论证的两位力学专家——中国科学院力学研究所国家微重力实验室副主任、研究员康琦和研究员赵建福,向《中国科学报》记者详细阐述了微重力科研的独特价值及其对人类未来的意义。
“很多重大基础物理问题,都需要在太空环境中进行验证。”康琦解释,比如冷原子物理中的冷原子需要太空低温环境,以使其沉降;而科学界所熟知的爱因斯坦的广义相对论也需要在太空环境中予以验证。
微重力科学涉及一个庞大的学科体系,这难免会让公众产生理解上的困惑。然而,提起“微重力”的另一个称谓——“失重”,大家则不会感到陌生了。
“乘电梯时电梯加速下降的感觉,就是一种典型的失重体验。”康琦解释说,而如果在电梯加速下降时用弹簧秤称体重,弹簧秤的读数会大大减小;反之,电梯加速上升则属于超重,弹簧秤的读数会大大增加。
那么,在失重环境中,液体会发生怎样的变化?最直接的答案是,阿基米德的浮力定律将失效。
赵建福向记者解释,浮力定律最大前提是重力作用。重力导致水中存在静压梯度,即水越深,压力越大。而一旦失重,静压梯度将不复存在,容器内的流体压力趋于一致,浸没其中的物体周围受到水的压力合力为零,也就不会有浮力。
“在地面环境中,重力作用是主要的,表面张力的作用经常被掩盖;而在太空微重力条件下,表面张力则上升为主导因素,同时呈现与地面完全不同的奇异特征。”
如水膜实验所展示的,在太空失重环境下,水的表面张力成为控制流体形态的主要作用力。表面张力使水形成水膜、使水团成为球状。
对公众而言,此次太空科学实验授课无疑是一次新奇的体验和难得的科普经历,然而其背后蕴藏的对于我国载人航天工程的特殊意义,人们对其则知之甚少。
比如,航天器在飞行过程中,设备和燃料都涉及液体管理和热管理,特别是航天员生存所必需的氧气和水的供应,都离不开对液体形貌的控制。
“航天员出舱活动时需要对航天服内部的湿度进行控制,如果出汗产生的水蒸气导致航天服内部湿度过大,就会影响到宇航员的体能与动作。因此,这就须将水蒸气冷凝变成液体排掉,而气与液之间的界面在常重力与微重力情况下会有很大差异,需要我们认真研究。”康琦说。
事实上,在国外载人航天的发展历程中,尝试在微重力状态下进行科学研究一直贯穿始终,并且是重要内容之一。
20世纪60年代,美苏展开太空竞赛,微重力实验成为两国角力的焦点。此后,前苏联率先发射了第一颗人造地球卫星,较早地开展了一系列微重力实验研究,但其研究成果大多处于保密状态。
“美国早期的微重力实验,是在天花板上吊起实验装置,下面是沙坑或床垫,让实验装置自由下落,从而产生零点几秒钟的失重时间。”赵建福介绍说,正是当初这些简陋的实验,使科学家得以了解在微重力条件下流体运动与传热的规律,为人类的航天科技发展奠定了基础。
特别声明:本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。